Trust Networks on the Semantic Web

نویسندگان

  • Jennifer Golbeck
  • Bijan Parsia
  • James A. Hendler
چکیده

The so-called "Web of Trust" is one of the ultimate goals of the Semantic Web. Research on the topic of trust in this domain has focused largely on digital signatures, certificates, and authentication. At the same time, there is a wealth of research into trust and social networks in the physical world. In this paper, we describe an approach for integrating the two to build a web of trust in a more social respect. This paper describes the applicability of social network analysis to the semantic web, particularly discussing the multi-dimensional networks that evolve from ontological trust specifications. As a demonstration of algorithms used to infer trust relationships, we present several tools that allow users to take advantage of trust metrics that use the network.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AHP Techniques for Trust Evaluation in Semantic Web

The increasing reliance on information gathered from the web and other internet technologies raise the issue of trust. Through the development of semantic Web, One major difficulty is that, by its very nature, the semantic web is a large, uncensored system to which anyone may contribute. This raises the question of how much credence to give each resource. Each user knows the trustworthiness of ...

متن کامل

AHP Techniques for Trust Evaluation in Semantic Web

The increasing reliance on information gathered from the web and other internet technologies raise the issue of trust. Through the development of semantic Web, One major difficulty is that, by its very nature, the semantic web is a large, uncensored system to which anyone may contribute. This raises the question of how much credence to give each resource. Each user knows the trustworthiness of ...

متن کامل

Prediction of user's trustworthiness in web-based social networks via text mining

In Social networks, users need a proper estimation of trust in others to be able to initialize reliable relationships. Some trust evaluation mechanisms have been offered, which use direct ratings to calculate or propagate trust values. However, in some web-based social networks where users only have binary relationships, there is no direct rating available. Therefore, a new method is required t...

متن کامل

A Local Qualitative Approach to Referral and Functional Trust

Trust and confidence are becoming key issues in diverse applications such as ecommerce, social networks, semantic sensor web, semantic web information retrieval systems, etc. Both humans and machines use some form of trust to make informed and reliable decisions before acting. In this work, we briefly review existing work on trust networks, pointing out some of its drawbacks. We then propose a ...

متن کامل

Using Trust and Provenance for Content Filtering on the Semantic Web

Social networks are a popular movement on the web. Trust can be used effectively on the Semantic Web as annotations to social relationships. In this paper, we present a two level approach to integrating trust, provenance, and annotations in Semantic Web systems. We describe an algorithm for inferring trust relationships using provenance information and trust annotations in Semantic Web-based so...

متن کامل

Combining Provenance with Trust in Social Networks for Semantic Web Content Filtering

Social networks are a popular movement on the web. On the Semantic Web, it is simple to make trust annotations to social relationships. In this paper, we present a two level approach to integrating trust, provenance, and annotations in Semantic Web systems. We describe an algorithm for inferring trust relationships using provenance information and trust annotations in Semantic Web-based social ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003